Vaccine-Induced Antibody Protection Against SARS-COV-2

Dan H. Barouch, M.D., Ph.D. Director, Center for Virology and Vaccine Research Beth Israel Deaconess Medical Center William Bosworth Castle Professor of Medicine Harvard Medical School Ragon Institute of MGH, MIT, and Harvard

Global HIV Vaccine Enterprise, International AIDS Society (IAS), Geneva, Switzerland November 14, 2023

Initial Experiments on Natural and Vaccine Immunity

Science

Science

RESEARCH ARTICLES

Cite as: A. Chandrashekar et al., Science 10.1126/science.abc4776 (2020).

SARS-CoV-2 infection protects against rechallenge in rhesus macaques

Abishek Chandrashekar^{1*}, Jinyan Liu^{1*}, Amanda J. Martinot^{1,2*}, Katherine McMahan^{1*}, Noe B. Mercado^{1*}, Lauren Peter^{1*}, Lisa H. Tostanoski^{1*}, Jingyou Yu^{1*}, Zoltan Maliga³, Michael Nekorchuk⁴, Kathleen Busman-Sahay⁴, Margaret Terry⁴, Linda M. Wrijil², Sarah Ducat², David R. Martinez⁵, Caroline Atyeo^{3,6}, Stephanie Fischinger⁶, John S. Burke⁶, Matthew D. Slein⁶, Laurent Pessaint⁷, Alex Van Ry⁷, Jack Greenhouse⁷, Tammy Taylor⁷, Kelvin Blade⁷, Anthony Cook⁷, Brad Finneyfrock⁷, Renita Brown⁷, Elyse Teow⁷, Jason Velasco⁷, Roland Zahn⁸, Frank Wegmann⁸, Peter Abbink¹, Esther A. Bondzie¹, Gabriel Dagotto^{1,3}, Makda S. Gebre^{1,3}, Xuan He¹, Catherine Jacob-Dolan^{1,3}, Nicole Kordana¹, Zhenfeng Li¹, Michelle A. Lifton¹, Shant H. Mahrokhian¹, Lori F. Maxfield¹, Ramya Nityanandam¹, Joseph P. Nkolola¹, Aaron G. Schmidt^{6,9}, Andrew D. Miller¹⁰, Ralph S. Baric⁵, Galit Alter^{6,9}, Peter K. Sorger³, Jacob D. Estes⁴, Hanne Andersen⁷, Mark G. Lewis⁷, Dan H. Barouch^{1,6,9+}

¹Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA. ²Tufts University Cummings School of Veterinary Medicine, North Grafton, MA 01536, USA. ³Harvard Medical School, Boston, MA 02115, USA. ⁴Oregon Health & Sciences University, Beaverton, OR 97006, USA. ⁵University of North Grafton, AC 01599, USA. ⁶Fagon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA. ⁷Bioqual, Rockville, MD 20852, USA. ⁸Janssen Vaccines & Prevention BV, Leiden, Netherlands. ⁹Massachusetts Consortium on Pathogen Readiness, Boston, MA 02215, USA. ¹⁰Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA.

*These authors contributed equally to this work.

+Corresponding author. Email: dbarouch@bidmc.harvard.edu

DNA vaccine protection against SARS-CoV-2 in rhesus macaques

Jingyou Yu^{1*}, Lisa H. Tostanoski^{1*}, Lauren Peter^{1*}, Noe B. Mercado^{1*}, Katherine McMahan^{1*}, Shant H. Mahrokhian^{1*}, Joseph P. Nkolola^{1*}, Jinyan Liu^{1*}, Zhenfeng Li^{1*}, Abishek Chandrashekar^{1*}, David R. Martinez², Carolin Loos³, Caroline Atyeo³, Stephanie Fischinger³, John S. Burke³, Matthew D. Slein³, Yuezhou Chen⁴, Adam Zuiani⁴, Felipe J. N. Lelis⁴, Meghan Travers⁴, Shaghayegh Habibi⁴, Laurent Pessaint⁵, Alex Van Ry⁵, Kelvin Blade⁵, Renita Brown⁵, Anthony Cook⁵, Brad Finneyfrock⁵, Alan Dodson⁵, Elyse Teow⁵, Jason Velasco⁵, Roland Zahn⁶, Frank Wegmann⁶, Esther A. Bondzie¹, Gabriel Dagotto¹, Makda S. Gebre¹, Xuan He¹, Catherine Jacob-Dolan¹, Marinela Kirilova¹, Nicole Kordana¹, Zijin Lin¹, Lori F. Maxfield¹, Felix Nampanya¹, Ramya Nityanandam¹, John D. Ventura¹, Huahua Wan¹, Yongfei Cai⁷, Bing Chen^{7,6}, Aaron G. Schmidt^{3,8}, Duane R. Wesemann^{4,8}, Ralph S. Baric², Galit Alter^{5,8}, Hanne Andersen⁵, Mark G. Lewis⁵, Dan H. Barouch^{1,2,8+}

RESEARCH ARTICLES

Cite as: J. Yu et al., Science 10.1126/science.abc6284 (2020).

¹Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA. ²University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. ⁴Pagon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA. ⁴Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. ⁵Bioqual, Rockville, MD 20852, USA. ⁶Janssen Vaccines & Prevention BV, Leiden, Netherlands. ⁷Children's Hospital, Boston, MA 02115, USA. ⁴Massachusetts Consortium on Pathogen Readiness, Boston, MA 02215, USA.

*These authors contributed equally to this work. †Corresponding author. Email: dbarouch@bidmc.harvard.edu

Chandrashekar et al. Science May 20, 2020; Yu et al. Science May 20, 2020

Natural Immunity: SARS-CoV-2 Infection Protects Against Re-Challenge in Rhesus Macaques

Chandrashekar et al. Science May 20, 2020

Vaccine Immunity: DNA Vaccine Induced NAb Titers Correlate with SARS-CoV-2 Protection in Macaques

Yu et al. Science May 20, 2020

nature

https://doi.org/10.1038/s41586-020-2607-z

Accelerated Article Preview

Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques

Received: 20 June 2020

Accepted: 24 July 2020

Accelerated Article Preview Published online 30 July 2020

Cite this article as: Mercado, N. B. et al. Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques. *Nature* https://doi.org/10.1038/s41586-020-2607-z (2020). Noe B. Mercado, Roland Zahn, Frank Wegmann, Carolin Loos, Abishek Chandrashekar, Jingyou Yu, Jinyan Liu, Lauren Peter, Katherine McMahan, Lisa H. Tostanoski, Xuan He, David R. Martinez, Lucy Rutten, Rinke Bos, Danielle van Manen, Jort Vellinga, Jerome Custers, Johannes P. Langedijk, Ted Kwaks, Mark J. G. Bakkers, David Zuijdgest, Sietske K. Rosendahl Huber, Caroline Atyeo, Stephanie Fischinger, John S. Burke, Jared Feldman, Blake M. Hauser, Timothy M. Caradonna, Esther A. Bondzie, Gabriel Dagotto, Makda S. Gebre, Emily Hoffman, Catherine Jacob-Dolan, Marinela Kirilova, Zhenfeng Li, Zijin Lin, Shant H. Mahrokhian, Lori F. Maxfield, Felix Nampanya, Ramya Nityanandam, Joseph P. Nkolola, Shivani Patel, John D. Ventura, Kaylee Verrington, Huahua Wan, Laurent Pessaint, Alex Van Ry, Kelvin Blade, Amanda Strasbaugh, Mehtap Cabus, Renita Brown, Anthony Cook, Serge Zouantchangadou, Elyse Teow, Hanne Andersen, Mark G. Lewis, Yongfei Cai, Bing Chen, Aaron G. Schmidt, R. Keith Reeves, Ralph S. Baric, Douglas A. Lauffenburger, Galit Alter, Paul Stoffels, Mathai Mammen, Johan Van Hoof, Hanneke Schuitemaker & Dan H. Barouch

÷.

Mercado et al. Nature July 30, 2020

NAb Titers Correlate with Protection in Macaques: Ad26 SARS-CoV-2 Vaccine

Mercado et al. Nature July 30, 2020

Binding and Fc Functional Antibody Titers Also Correlate with Protection in Macaques

Mercado et al. Nature July 30, 2020

nature

https://doi.org/10.1038/s41586-020-03041-6

Accelerated Article Preview

Correlates of protection against SARS-CoV-2 in rhesus macaques

Received: 5 September 2020	Katherine McMahan, Jingyou Yu, Noe B. Mercado, Carolin Loos, Lisa H. Tostanoski,		
Accepted: 25 November 2020	Abishek Chandrashekar, Jinyan Liu, Lauren Peter, Caroline Atyeo, Alex Zhu, Esther A. Bondzie Gabriel Dagotto, Makda S. Gebre, Catherine Jacob-Dolan, Zhenfeng Li, Felix Nampanya,		
Accelerated Article Preview Published online 4 December 2020	Shivani Patel, Laurent Pessaint, Alex Van Ry, Kelvin Blade, Jake Yalley-Ogunro, Mehtap Cabus, Renita Brown, Anthony Cook, Elyse Teow, Hanne Andersen, Mark G. Lewis,		
Cite this article as: McMahan, K. et al.	Douglas A. Lauffenburger, Galit Alter & Dan H. Barouch		

Cite this article as: McMahan, K. et al.

McMahan et al. Nature Dec 4, 2020

NAb Titers Correlate with Protection in Macaques: Adoptive Transfer of Purified IgG

Days Following Challenge

McMahan et al. Nature Dec 4, 2020

A Covid-19 Milestone Attained — A Correlate of Protection for Vaccines

Peter B. Gilbert, Ph.D., Ruben O. Donis, Ph.D., Richard A. Koup, M.D., Youyi Fong, Ph.D., Stanley A. Plotkin, M.D., and Dean Follmann, Ph.D.

 NAb titers correlated with protection in the phase 3 efficacy trials against ancestral virus

Gilbert et al. NEJM 2022; 387:2203-2206

A Covid-19 Milestone Attained — A Correlate of Protection for Vaccines

Peter B. Gilbert, Ph.D., Ruben O. Donis, Ph.D., Richard A. Koup, M.D., Youyi Fong, Ph.D., Stanley A. Plotkin, M.D., and Dean Follmann, Ph.D.

- NAb titers correlated with protection in the phase 3 efficacy trials against ancestral virus
- But platforms differ: J&J required 5-fold lower and NVX required 5-fold higher NAb titers for similar protection as Moderna
- Suggests role of T cells in protection
- Omicron increased transmissibility and reduced incubation period impact correlates
- Recent real-world data show that NAb titers of 100 do not protect against Omicron
- These NAb correlates do not hold for variants

Gilbert et al. NEJM 2022; 387:2203-2206

Neutralization Escape of BA.1, BA.2, BA.5 Variants

BNT162b2 Vaccine

Hachmann et al. NEJM 2022; 387:86-88

Vaccine Protection Against Omicron Hospitalization and ICU Admission in South Africa in the Absence of NAbs

Gray et al. 2022 NEJM May 4, 2022

nature

https://doi.org/10.1038/s41586-022-04465-y

Accelerated Article Preview

Vaccines Elicit Highly Conserved Cellular Immunity to SARS-CoV-2 Omicron

Received: 28 December 2021	Jinyan Liu, Abishek Chandrashekar, Daniel Sellers, Julia Barrett, Catherine Jacob-Dolan,	
Accepted: 25 January 2022	Michelle Lifton, Katherine McMahan, Michaela Sciacca, Haley VanWyk, Cindy Wu, Jingyou Yu, Ai-ris Y, Collier & Dan H, Barouch	
Accelerated Article Preview		

Liu et al. Nature, January 31, 2022

Vaccine-Elicited CD8 T Cell Responses are Highly Cross-Reactive to Omicron

Time Following Immunization

Liu et al. Nature, January 31, 2022

Vaccine-Elicited CD8 T Cell Responses are Highly Cross-Reactive to Omicron

Liu et al. Nature, January 31, 2022

In Vivo CD8 T Cell Depletion to Evaluate Mechanistic Correlates of Protection Against Delta in Macaques

Vaccine		Depleting S Antibody	SARS-CoV-2 Delta
		Ļ	
Week	0	5	6
	Ad26.COV2.S	Anti-CD8α	SARS-CoV-2
	Ad26.COV2.S	Anti-CD8β	SARS-CoV-2
	Ad26.COV2.S	Sham	SARS-CoV-2
	Sham	Anti-CD8α	SARS-CoV-2
	Sham	Anti-CD8β	SARS-CoV-2
	Sham	Sham	SARS-CoV-2

Liu et al. Sci. Immunol. Aug 9, 2022

In Vivo CD8 T Cell Depletion Reduces Vaccine Protection Against SARS-CoV-2 Delta in Macaques

Peak (BAL)

Day 4 (BAL)

Liu et al. Sci. Immunol. Aug 9, 2022

Correlates of Protection for COVID-19 Vaccines: Conclusions

- Neutralizing, Fc functional, and binding antibodies correlate with protection against SARS-CoV-2
- Data from macaques and humans suggest that both antibodies and CD8 T cells, and not antibodies alone, are important for vaccine protection
- CD8 T cell responses demonstrate substantially greater durability and cross-reactivity against variants than neutralizing antibody responses
- Short-term NAb responses are important, but durability of Ab and T cell responses critical for protection against severe disease with variants

BIDMC Ninaad Lasrado Jay Yu Ai-ris Collier Katherine McMahan Jinyan Liu Nicole Hachmann Jess Miller Abi Chandrashekar Noe Mercado

<u>Janssen</u> Frank Wegmann Roland Zahn Hanneke Schuitemaker LANL Bette Korber James Theiler Kshitij Wagh