#### Vaccinal effect of anti-HIV-1 antibodies



Ole Schmeltz Søgaard, Professor and MD Dept of Infectious Diseases, Aarhus University Hospital, Denmark

### Can bNAbs do more than ART?

bNAbs can engage innate immune effector cells and facilitate killing of infected cells



### bNAb mediated enhancement of HIV-specific adaptive immunity?



AARHUS UNIVERSITY Caskey et al. Nature, 2015; Halper-Stromberg and Nussenzweig JCI 2016; Nishimura et al Nature 2017

### Antibody:antigen immune complexes



Adapted from Wen et al. NPJ 2019

### Impact of antibody:antigen ratio

|                                                           | HIGH ANTIGEN LOAD                            | LOW ANTIGEN LOAD            |
|-----------------------------------------------------------|----------------------------------------------|-----------------------------|
| bNAb administration                                       | E.g. at ART initiation                       | E.g. during ART or into ATI |
| Plasma viremia                                            | High (10 <sup>4</sup> -10 <sup>7</sup> c/mL) | < 50 c/mL                   |
| HIV antigen in blood and tissue                           | Abundent                                     | Very low                    |
| Opportunity for antibody:antigen immune complex formation | High                                         | Low to modest               |
| Risk of resistance development to bNAbs                   | No                                           | Yes                         |





Studies of nAbs/bNAbs administration in a <u>high</u> antigen load setting

# Investigations into HIV/SIV antibodies as treatment for almost 30 years



| Group     | Animal | Clinical signs                                         | Week of<br>euthanasi |
|-----------|--------|--------------------------------------------------------|----------------------|
| SIVIG     | 196    | CD4 decline: wasting                                   | 18                   |
|           | 204    | Wasting and diarrhea                                   | 20                   |
|           | 176    | Healthy                                                | _                    |
|           | 185    | Healthy                                                |                      |
|           | 191    | Healthy                                                |                      |
|           | 199    | Healthy                                                |                      |
| Normal 1G | 192    | Wasting and diarrhea                                   | 20                   |
|           | 184    | Wasting and diarrhea; CD4 decline; ataxia              | 42                   |
|           | 104    | Lymphadenopathy; pneumonia                             | 43                   |
|           | 88     | Wasting and diarrhea; CD4 decline                      | 52                   |
|           | 186    | Persistent (>40 week) rash;<br>secondary infections    |                      |
|           | 200    | Healthy                                                |                      |
| Untreated | 213    | Wasting and diarrhea;<br>involution of lymphoid tissue | 36                   |
|           | 195    | CD4 decline; pulmonary thromboembolism                 | 67                   |
|           | 182    | CD4 decline; respiratory<br>distress                   |                      |
|           | 363    | CD4 decline: diarrhea                                  |                      |

#### Neutralizing anti-SIV-Abs during primary infection

Total IgG was purified from the plasma of a single animal infected with SIV and surviving more than 6 years without signs of AIDS.

Infused IgG delayed binding antibody and accelerated Nab production.

Haigwood et al. JVI 2004



### **Neutralizing antibodies**

Passive iv infusion with 300 mg of polyclonal anti-SIV neutralizing IgG at day 7 post-infection with mac239.



#### Enhanced SIV-specific T cell responses





Iseda et al. JVI, 2016, Yamamoto et al. JVI 2009

#### Development of bNAbs against HIV-1



Spencer et al, Frontiers Public Health 2021



Frattari et al. Current Opi HIV/AIDS 2023

#### ART or bNAbs dosed in acute SHIV<sub>ad08</sub> infection

#### Earsynderekssisepplyeaspyl

#### And leads to longterm control in some animals



### **bNAbs dosed in acute SHIV**<sub>ad08</sub> infection

а b 108 108 108 MVJ DEMR DEWL 107 107 10 10<sup>6</sup> 10 106 10<sup>5</sup> 105 10 104 104 104 Viral RNA copies (ml<sup>-1</sup>) 10<sup>3</sup> 10<sup>3</sup> 10<sup>3</sup> 100 200 300 400 500 600 700 800 900 100 200 300 400 500 600 700 800 900 200 0 0 0 400 600 800 1,000 d е f 10<sup>8</sup> 10<sup>8</sup> 10<sup>8</sup> DFIK DEWP MAF 107 107 107 10<sup>6</sup> 106 106 10<sup>5</sup> 105 105 104 104 104

0 100 200 300 400 500 600 700 800 900 1,000

Time (days after infection)

10<sup>3</sup>

200 300 400 500 600 700

Anti-CD8α treatment Anti-CD8β treatment

10<sup>3</sup>

10<sup>2</sup>

0

100

#### CD8 T cell depletion leads to viral rebound

Nishimura et al. Nature 2017

100

200

300

400

500

600

10<sup>3</sup>

0

### Induction of autologous tier-2 nAbs



The absolute change in neutralizing activity varied between viruses and individuals, ranging from small effects to dramatic increases

Schoofs et al. Science 2016

### eCLEAR trial design (open label RCT)



### Pre-ART sensitivity to 3BNC117 (plasma)

#### 3BNC group: 8/15 (53%) sensitive

|     |                                                      | Mono<br>Pheno | gram<br>Sense | <i>env</i> sequencing |            |
|-----|------------------------------------------------------|---------------|---------------|-----------------------|------------|
|     | Participant<br>ID                                    | IC90          | MPI           | Sensitive/<br>total   | Assessment |
|     | 109                                                  |               |               | 33/33                 | Sensitive  |
|     | 135                                                  |               |               | 31/31                 | Sensitive  |
|     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 98.0          | -             | Sensitive             |            |
|     |                                                      | -             | 30/31         | Sensitive             |            |
| (01 |                                                      | 99.8          | -             | Sensitive             |            |
| (u= |                                                      | 0.18          | 99.5          | -                     | Sensitive  |
| 11/ | 701                                                  | 0.92          | 99.7          | -                     | Sensitive  |
|     | 703                                                  | 0.30          | 99.9          | -                     | Sensitive  |
| -3B | 106                                                  | 2.48          | 99.1          | -                     | Resistant  |
| 4T+ | 125                                                  | 1.63          | 97.2          | -                     | Resistant  |
| A   | 126                                                  | 2.10          | 97.8          | -                     | Resistant  |
|     | 205                                                  | 3.41          | 97.0          | -                     | Resistant  |
|     | 401                                                  | 4.15          | 98.2          | -                     | Resistant  |
|     | 404                                                  | 1.88          | 99.0          | -                     | Resistant  |
|     | 704                                                  | >50           | 44.2          | -                     | Resistant  |

#### 3BNC/RMD group: 10/16 (63%) sensitive

|     |                   | Monogram<br>PhenoSense |      | <i>env</i> sequencing |            |  |  |  |  |
|-----|-------------------|------------------------|------|-----------------------|------------|--|--|--|--|
| -   | Participant<br>ID | IC90                   | MPI  | Sensitive/<br>total   | Assessment |  |  |  |  |
|     | 103               | 0.96                   | 99.2 | -                     | Sensitive  |  |  |  |  |
|     | 107 0.25 99.9     |                        |      | -                     | Sensitive  |  |  |  |  |
|     | 116               | 0.34                   | 99.9 | -                     | Sensitive  |  |  |  |  |
|     | 130               | -                      | -    | 33/33                 | Sensitive  |  |  |  |  |
| =16 | 203               | 1.22                   | 99.6 | -                     | Sensitive  |  |  |  |  |
| ü   | 212               | 0.67                   | 99.9 | -                     | Sensitive  |  |  |  |  |
| MD  | 303               | 0.20                   | 99.6 | -                     | Sensitive  |  |  |  |  |
| 7+R | 304               | 0.74                   | 99.9 | -                     | Sensitive  |  |  |  |  |
|     | 408               | 0.15                   | 99.5 | -                     | Sensitive  |  |  |  |  |
| BN  | 706               | 0.80                   | 99.7 | -                     | Sensitive  |  |  |  |  |
| +3  | 112               | >50                    | 08.6 | -                     | Resistant  |  |  |  |  |
| AR] | 301               | 4.51                   | 98.8 | -                     | Resistant  |  |  |  |  |
| 7   | 308               | 3.09                   | 94.6 | -                     | Resistant  |  |  |  |  |
|     | 402               | -                      | -    | 7/35                  | Resistant  |  |  |  |  |
|     | 411               | 3.22                   | 99.3 | -                     | Resistant  |  |  |  |  |
|     | 709               | 7.44                   | 96.3 | -                     | Resistant  |  |  |  |  |

Monogram Phenosense 3BNC117 sensitivity. Sensitive defined IC90<1.5 ug/mLAND MPI≥98 as agreed on consensus meeting in Nov 2019 In case of "Inconlusive" Phenosense result, SGA was performed to obtain ≥30 individual full length Env sequences. Follow sequincing, sensitivity was predicted using the Nussenzweig Lab machine learning algorithm,

### **Plasma HIV RNA kinetics**



AARHUS UNIVERSITY Gunst et al. Nature Med 2022

### 3 phase pVL decay mixed-effects model



#### 3 phase pVL decay mixed-effects model

|       | Phase (days)   | 1 (0-10) | 95%-CI        | Р     | 2 (10-24) | 95%-CI        | Р     | 3 (24-90) | 95%-CI        | Р     |
|-------|----------------|----------|---------------|-------|-----------|---------------|-------|-----------|---------------|-------|
|       | ART            | -41.1    | (-55.2;-22,7) | ref   | -10.0     | (-14.9;-4.86) | ref   | -3.19     | (-4.75;-1.61) | ref   |
| erall | ART+3BNC117    | -43.7    | (-71.1;9.66)  | 0.823 | -16.4     | (-27.0;-4.29) | 0.070 | -3.09     | (-6.54;0.49)  | 0.918 |
| Ŏ     | ART+RMD        | -36.2    | (-67.5;25.2)  | 0.694 | -18.5     | (-29.0;-6.51) | 0.017 | -3.03     | (-6.54;0.61)  | 0.875 |
|       | ART+3BNC117+RM | D -36.5  | (-67.3;23.2)  | 0.706 | -16.9     | (-27.3;-4.93) | 0.048 | -2.70     | (-6.19;0.92)  | 0.622 |



### Pre-ART bNAb sensitivity impacts pVL



#### 3 phase pVL decay mixed-effects model

|       | Phase (days)    | 1 (0-10) | 95%-CI        | Р     | 2 (10-24) | 95%-CI        | Р     | 3 (24-90) | 95%-CI        | Р     |
|-------|-----------------|----------|---------------|-------|-----------|---------------|-------|-----------|---------------|-------|
|       | ART             | -41.1    | (-55.2;-22,7) | ref   | -10.0     | (-14.9;-4.86) | ref   | -3.19     | (-4.75;-1.61) | ref   |
| erall | ART+3BNC117     | -43.7    | (-71.1;9.66)  | 0.823 | -16.4     | (-27.0;-4.29) | 0.070 | -3.09     | (-6.54;0.49)  | 0.918 |
| 0ve   | ART+RMD         | -36.2    | (-67.5;25.2)  | 0.694 | -18.5     | (-29.0;-6.51) | 0.017 | -3.03     | (-6.54;0.61)  | 0.875 |
|       | ART+3BNC117+RMD | -36.5    | (-67.3;23.2)  | 0.706 | -16.9     | (-27.3;-4.93) | 0.048 | -2.70     | (-6.19;0.92)  | 0.622 |
| itive | ART+3BNC117     | -38.9    | (-62.1;-1.41) | 0.714 | -17.9     | (-28.8;-5.16) | 0.045 | -4.02     | (-7.80;-0.07) | 0.488 |
| Sens  | ART+3BNC117+RMD | -36.2    | (-60.1;1.91)  | 0.556 | -17.9     | (-28.8;-5.28) | 0.042 | -2.81     | (-6.64;1.17)  | 0.739 |
| stant | ART+3BNC117     | -48.8    | (-69.0;-15.5) | 0.629 | -14.7     | (-26.0;-1.58) | 0.247 | -2.02     | (-5.87;1.98)  | 0.327 |
| Resis | ART+3BNC117+RMD | -37.0    | (-61.7;3.39)  | 0.631 | -15.1     | (-26.2;-2.28) | 0.198 | -2.51     | (-6.48;1.64)  | 0.568 |



#### Effect of 3BNC on HIV<sup>p24+</sup> CD4 T cells

Fold change in HIV<sup>p24+</sup> cells day 0 to day 10





# The frequency of Gag-specific CD8+ T cells was significantly higher in individuals receiving 3BNC117





Rosas-Umbert et al., 2022 Nature Comm

## HIV-specific CD8+ T cell responses at 3 and 12 months correlated with baseline 3BNC117 sensitivity

#### Pol-specific CD8 responses at 3 m



#### Gag-specific INF-g responses at 12 m



Rosas-Umbert et al., 2022 Nature Comm

#### Analytical treatment interruption (12 weeks)



AARHUS UNIVERSITY

- 20 participants consented to interrupt ART
- Start of ATI ≥400 days after starting ART
- Weekly pVL and CD4
  count
- Viral rebound defined as two consecutively pVLs >5,000 c/mL

### ATI: 3BNC-treated individuals only (+/-RMD)



ID107 remains off treatment with undetectable pVL 5 years after stopping ART



### ATI – 3BNC sensitive (+/-RMD) vs others

#### 3BNC sensitive vs resistant

#### 3BNC sensitive vs all other ATI participants





Studies of nAbs/bNAbs administration in a low antigen load setting

#### **bNAbs in ART-suppressed NHPs with SHIV**

Pol







#### A phase 1 trial of PGT121 in viremic individuals



#### CD8 responses in 2 controllers at day 84





Stephenson et al, Nature Med 2021

# Effect of 3BNC117 and romidepsin on the HIV-1 reservoir in people taking suppressive antiretroviral therapy (ROADMAP): a randomised, open-label, phase 2A trial

Henning Gruell\*, Jesper D Gunst\*, Yehuda Z Cohen\*, Marie H Pahus, Jakob J Malin, Martin Platten, Katrina G Millard, Martin Tolstrup, R Brad Jones, Winnifer D Conce Alberto, Julio C C Lorenzi, Thiago Y Oliveira, Tim Kümmerle, Isabelle Suárez, Cecilia Unson-O'Brien, Lilian Nogueira, Rikke Olesen, Lars Østergaard, Henrik Nielsen, Clara Lehmann, Michel C Nussenzweig, Gerd Fätkenheuer, Florian Klein, Marina Caskey, Ole S Søgaard



#### ROADMAP study (Romidepsin +/- 3BNC117)

- Collaboration between The Rockefeller University, Aarhus and Cologne University hospitals
- Study population (n=22): (Chronically infected) persons on stable longcART
- Primary endpoint: Time to rebound





#### Gruell et al., 2022 Lancet Microbe

#### Reservoir size, CTLs and viral rebound

Total HIV-1 DNA

#### HIV-specific CTL responses



# Study design: Randomized, double-blinded, placebo-controlled trial

| ART                                     |         |                               |      |     |          | AR1           | <sup>-</sup> interu | ption-          |                |                   |                       |              |                 |                 |                   |   | →       |
|-----------------------------------------|---------|-------------------------------|------|-----|----------|---------------|---------------------|-----------------|----------------|-------------------|-----------------------|--------------|-----------------|-----------------|-------------------|---|---------|
| Placebo ∜/ placebo ♡♡ (n=11)            |         |                               |      | Û   | <b>↓</b> | Û             | Û                   | $\nabla$        | Ţ.             | Û                 |                       |              |                 |                 |                   |   |         |
| Lefitolimod ↓/ placebo ♡♡ (n=11)        |         |                               |      | ŧ   | <b>↓</b> | ŧ             | ŧ                   | V<br>V          | +              | •                 | ]                     | *******      |                 | 22244.          |                   |   |         |
| Placebo ♡/ bNAb▼▼(n=12)                 |         |                               | Û    | Û   | Ţ.       | Û             | Û                   | ↓<br>▼          | Û              | Ţ.                | ]                     |              |                 |                 |                   |   |         |
| Lefitolimod↓/ bNAb▼▼ (n=12)             |         | ţ                             | ŧ    | •   | ŧ        | ŧ             | ↓<br>↓              | +               | +              | ]                 |                       |              |                 |                 |                   |   |         |
| bNAb sensitivity                        | Time a  | after ART interuption (weeks) | -2   | -1  | 0        | 1             | 2                   | 3               | 4              | 5                 | 6                     | 7            | 9               | 11              | 13                | / | 1<br>25 |
| genotypic)                              | Clinica | l safety                      | 0    |     | 0        |               |                     | 0               |                |                   | 0                     |              |                 |                 | 0                 | 0 | 0       |
| at screening:                           | Plasma  | a HIV-1 RNA                   | 0    | 0   | 0        | 0             | 0                   | 0               | 0              | 0                 | 0                     | 0            | 0               | 0               | 0                 | 0 | 0       |
| 2 to 20 weeks                           | Serum   | bNAb concentration            |      |     | 0        |               |                     |                 |                |                   | 0                     |              |                 |                 | 0                 |   | 0       |
| prior to                                | Intact  | HIV-1 proviruses (ddPCR)      |      |     | 0        |               |                     |                 |                |                   | 0                     |              |                 |                 | 0                 |   | 0       |
| trial start HI                          |         | HIV-1-specific immunity (AIM) |      |     | 0        |               |                     |                 |                |                   | 0                     |              |                 |                 | 0                 |   | 0       |
| Interventions Lefitolimod (120 mg s.c.) |         |                               | .c.) | bNA | Ab       | 3BN<br>7 Plac | C117<br>ebo fo      | (30 m<br>or 3Bl | ng/kg<br>NC112 | i.v.)<br>7 (i.v.) | <b>▼</b> 10-<br>⊽ Pla | 1074<br>cebo | (20 m<br>for 10 | ng/kg<br>)-1074 | i.v.)<br>4 (i.v.) |   |         |

• Primary endpoint: Time to viral rebound (>1,000 c/mL for 4 weeks or x2 >100,000 c/mL)



### Time to viral rebound



Time (weeks after ART interuption)

bNAb

Interventions Lefitolimod (120 mg s.c.)

▼ 3BNC117 (30 mg/kg i.v.) ▼ 10-1074 (20 mg/kg i.v.) ∨ Placebo for 3BNC117 (i.v.) ∨ Placebo for 10-1074 (i.v.)

### Time to viral rebound





#### Impact of TLR9a on bNAb concentrations





### HIV specific T cell immunity - AIM





### **Combining two bNAbs**

#### ARTICLE

https://doi.org/10.1038/s41586-018-0531-2

#### Combination therapy with anti-HIV-1 antibodies maintains viral suppression

Pilar Mendoza<sup>1,19</sup>, Henning Gruell<sup>2,3,4,19</sup>, Lilian Nogueira<sup>1</sup>, Joy A. Pai<sup>1</sup>, Allison L. Butler<sup>1</sup>, Katrina Millard<sup>1</sup>, Clara Lehmann<sup>3,4,5</sup>, Isabelle Suárez<sup>3,4,5</sup>, Thiago Y. Oliveira<sup>1</sup>, Julio C. C. Lorenzi<sup>1</sup>, Yehuda Z. Cohen<sup>1</sup>, Christoph Wyen<sup>3,6</sup>, Tim Kümmerle<sup>3,6</sup>, Theodora Karagounis<sup>1</sup>, Ching-Lan Lu<sup>1</sup>, Lisa Handl<sup>7</sup>, Cecilia Unson-O'Brierl<sup>1</sup>, Roshni Patel<sup>1</sup>, Carola Ruping<sup>2</sup>, Maike Schlotz<sup>2</sup>, Maggi Witmer -Pack<sup>1</sup>, Irina Shimeliovich<sup>1</sup>, Gisela Kremer<sup>3</sup>, Eleonore Thomas<sup>3</sup>, Kelly E. Seaton<sup>8</sup>, Jill Horowitz<sup>1</sup>, Anthony P. West Ir<sup>9</sup>, Pamela I. Bjorkman<sup>9</sup>, Georgia D. Tomaras<sup>8,10,11,2</sup>, Roy M. Gulick<sup>11</sup>, Nico Pfeifer<sup>7,14,15,16</sup>, Gerd Fätkenheuer<sup>3,4</sup>, Michael S. Seaman<sup>17</sup>, Florian Klein<sup>2,4,5,20</sup>\*, Marina Caskey<sup>1,20</sup>\* & Michel C. Nussenzweig<sup>1,18,20</sup>\*





Median time to viral rebound: 21 Weeks (i.e. 15 weeks from last bNAb infusion)



### Combination anti-HIV antibodies provide sustained virological suppression





### Prolonged viral suppression with anti-HIV-1 antibody therapy



#### ◆ Leukapheresis ▼ 10-1074 ▼ 3BNC117

Article



Sneller et al. Nature 2022

Gaebler et al. Nature 2022

### Conclusions

- Some evidence of a HIV-1 bNAb-induced vaccinal effect
- HIGH antigen load setting:
  - Studies generally show FcγR-mediated boosting of adaptive immune responses
  - But magnitude of effect varies between individuals
- LOW antigen load setting:
  - Studies generally show limited or no FcγR-mediated boosting of adaptive immune responses
  - But some individuals might have some beneficial effects

