

The pharmacokinetics, pharmacogenetics, and toxicity of the interaction between efavirenz and isoniazid

J. Taylor¹, G. Maartens¹, S. Sokhela², N. Chandiwana², G. Akpomiemie², F. Venter², P. Sinxadi^{1,3}

¹University of Cape Town, Department of Medicine, Division of Clinical Pharmacology, Cape Town, South Africa ²University of Witwatersrand, Wits Health Consortium, Ezintsha, Johannesburg, South Africa, ³South African Medical Research Council, SAMRC/UCT Platform for Pharmacogenomics Research and Translation, Cape Town, South Africa

Background

- People with *CYP2B6* slow metaboliser genotypes have higher efavirenz concentrations, which are further increased by isoniazid, which inhibits the accessory metabolising enzyme of efavirenz, CYP2A6.
- We hypothesized that higher efavirenz concentrations would be associated with more toxicity (neuropsychiatric, metabolic and
- CYP2B6 slow metabolisers had higher log-transformed efavirenz concentrations on isoniazid than extensive metabolisers (β=1.66 [95% CI 0.98 to 2.34] p < 0.001) after adjustment for baseline weight and other covariates.
- *CYP2B6* slow metabolisers had greater increases in total cholesterol and HDL-cholesterol over 24 weeks than extensive metabolisers (Table 1).

hepatic) in *CYP2B6* slow metabolisers on isoniazid and efavirenzbased antiretroviral therapy (ART).

Methods

- We conducted a substudy of participants randomized to the efavirenz arm of the ADVANCE trial (NCT03122262) who received isoniazid and consented to genotyping.
- We compared paired efavirenz concentrations on and off isoniazid and stratified by CYP2B6 genotype.
- Neuropsychiatric symptoms were screened for using the Modified Mini Screen (MMS).
- We used linear regression to detect associations between *CYP2B6* genotype and efavirenz concentrations on isoniazid; and changes from baseline to week 24 in lipids, alanine aminotransferase (ALT), fasting plasma glucose, sleep quality, and MMS scores.

Results

Table 1. Multivariable linear regression models for change in total cholesterol, LDLcholesterol, HDL-cholesterol and triglycerides from baseline to week 24.

Variables	Change in total cholesterol (mmol/L)	Change in LDL- cholesterol (mmol/L)	Change in HDL- cholesterol (mmol/L)	Change in triglycerides (mmol/L)
	β	β	β	β
	(95% CI)	(95% CI)	(95% CI)	(95% CI)

CYP2B6 genotype (Reference: Extensive Metaboliser)

Intermediate Metaboliser	0.13	0.19	0.06	-0.76
	(-0.21 to 0.47)	(-0.08 to 0.45)	(-0.06 to 0.18)	(-2.59 to 1.07)
Slow Metaboliser	0.44	0.27	0.39	-1.50
	(0.01 to 0.86) *	(-0.05 to 0.59)	(0.21 to 0.57) *	(-4.59 to 1.60)
CYP2A6 genotype (Refe	rence: Extensive N	/letaboliser)		
Intermediate Metaboliser	0.04	-0.11	0.17	-0.23
	(-0.30 to 0.38)	(-0.39 to 0.17)	(-0.01 to 0.35)	(-0.95 to 0.49)
Slow Metaboliser	0.23	0.09	-0.08	0.07
	(-0.39 to 0.85)	(-0.90 to 1.08)	(-0.42 to 0.26)	(-2.40 to 2.54)
NAT2 genotype (Referen	ce: Rapid Acetyla	tor)		1
Intermediate Acetylator	0.21	0.21	0.02	0.72
	(-0.21 to 0.62)	(-0.17 to 0.60)	(-0.20 to 0.25)	(-1.32 to 2.77)
Slow Acetylator	0.25	0.07	0.13	1.16
	(-0.22 to 0.72)	(-0.31 to 0.45)	(-0.10 to 0.37)	(-1.85 to 4.16)
Male Sex	-0.26	-0.27	-0.14	0.08
(Reference: Female)	(-0.56 to 0.03)	(-0.51 to -0.03) *	(-0.27 to -0.01) *	(-0.38 to 0.55)
Age (years)	0.01	0.01	0.002	0.05
	(-0.01 to 0.04)	(-0.01 to 0.03)	(-0.01 to 0.01)	(-0.06 to 0.17)
Baseline CD4 count	-0.02	-0.06	-0.02	0.26
(per 100 cells)	(-0.12 to 0.09)	(-0.13 to 0.02)	(-0.05 to 0.01)	(-0.30 to 0.83)
Baseline VL (log10	-0.02	-0.04	-0.03	0.27
cp/mL)	(-0.21 to 0.18)	(-0.21 to 0.12)	(-0.10 to 0.04)	(-0.23 to 0.77)
Weight (kg)	-0.003	0.002	-0.003	-0.02
	(-0.01 to 0.01)	(-0.01 to 0.01)	(-0.01 to 0.002)	(-0.06 to 0.03)
Baseline value of dependent variable (mmol/L)	-0.45 (-0.67 to -0.22) *	-0.50 (-0.73 to -0.26) *	-0.17 (-0.29 to -0.04) *	1.45 (-2.97 to 5.86)
(*p < 0.05) Abbreviations: LDL – low-den NAT2 – N-acetvltransferase 2	sity lipoprotein; HDL – ; VL – HIV viral load.	high-density lipoproteii	n; 95% CI – 95% confid	dence interval;

- We included 176 participants, 168 of whom were classifiable by *CYP2B6* genotype, median age 31 years, 57% female.
- The proportions of *CYP2B6* metaboliser genotypes were: 28% extensive, 45% intermediate, and 27% slow.
- Baseline characteristics were similar between CYP2B6 metaboliser genotypes, except for weight, which was lower in extensive metabolisers (p = 0.02).
- Efavirenz concentrations on isoniazid were greater than off isoniazid in *CYP2B6* slow and intermediate metabolisers (Figure 1).

- *CYP2B6* slow metabolisers had greater increases in low-density lipoprotein cholesterol over 24 weeks, but this was not statistically significant (β =0.27 [95% CI -0.05 to 0.59] p = 0.09).
- There was no association between CYP2B6 genotype and change in ALT, fasting plasma glucose, triglycerides, sleep scores or MMS scores over 24 weeks.

Conclusion

Figure 1. Boxplots of efavirenz concentrations on and off isoniazid (A) All participants (pseudo-median difference 0.49 μg/mL [95% CI 0.19 to 0.91]), (*B*) *CYP2B6* slow metabolisers (pseudo-median difference 2.13 μg/mL [95% CI 0.02 to 8.77]), (*C*) *CYP2B6* intermediate metabolisers (pseudo-median difference 0.52 μg/mL [95% CI 0.16 to 0.89]),and (*D*) *CYP2B6* extensive metabolisers (pseudo-median difference 0.07 μg/mL [95% CI -0.25 to 0.39]).

- CYP2B6 slow metabolisers on isoniazid had greater increases in total cholesterol and HDL-cholesterol.
- We found no association between CYP2B6 genotype and worsening sleep quality or psychiatric symptoms, hepatotoxicity, or dysglycemia.

Funding

United States Agency for International Development, Unitaid, South African Medical Research Council.

Corresponding Author

Phumla Sinxadi Email: phumla.sinxadi@uct.ac.za

